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In this paper we report on a high-order fast method to numerically calculate convolution integral with
smooth non-periodic kernel. This method is based on the Newton–Cotes quadrature rule for the integral
approximation and an FFT method for discrete summation. The method can have an arbitrarily high-
order accuracy in principle depending on the number of points used in the integral approximation and
a computational cost of O (N log(N)), where N is the number of grid points. For a three-point Simpson
rule approximation, the method has an accuracy of O (h4), where h is the size of the computational grid.
Applications of the Simpson rule based algorithm to the calculation of a one-dimensional continuous
Gauss transform and to the calculation of a two-dimensional electric field from a charged beam are also
presented.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Convolution has been used in solving some linear differential
equations such as the Poisson equation, the Helmoltz equation, and
the heat transfer equation based on the Green’s function method
under appropriate boundary conditions or initial conditions [1,2].
For example, the convolution between the Green’s function of the
Poisson equation and the density function has been used to obtain
potential field under open boundary conditions in plasma physics,
accelerator physics and cosmology simulations [3–5]. The direct
numerical calculation of the convolution for potential field has
a computational cost scaling as O (N2), where N is the number
of grid points in the domain. Fortunately, the discretized convo-
lution summation on an uniform grid can be calculated using a
cyclic summation on a doubled computational domain using an
FFT based method [5–7]. This reduces the computational cost from
O (N2) to O (N log(N)). However, the direct numerical convolution
of the density function and the Green’s function on the grid is
equivalent to a relatively low-order quadrature rule (trapezoidal
rule) approximation to the integral. In this paper, we propose
approximating the convolution integral using the Newton–Cotes
quadrature rule that can have arbitrarily high-order accuracy in
principle. By defining a new density function on the grid, the re-
sulting discrete summation can be calculated using the FFT based
method. To be specific, in this paper, we will present the algorithm
based on the Simpson rule approximation of the convolution inte-
gral. This algorithm has the accuracy O (h4) with a computational
cost O (N log(N)).

E-mail address: JQiang@lbl.gov.

The organization of the paper is as follows: after introduction,
we will present a one-dimensional algorithm in Section 2, a two-
dimensional Simpson rule based algorithm in Section 3, and final
discussions in Section 4.

2. One-dimensional convolution

In general, a one-dimensional convolution integral can be writ-
ten as

I(x) =
L∫

0

G
(
x − x′)ρ(

x′)dx′, (1)

where the function G can be related to the Green’s function of
a differential equation, and the ρ can be associated with charge
density or initial temperature. The above integral can be written
as the summation of M equal subinterval integrals:

I(x) =
M∑

i=1

x′
i+1∫

x′
i

G
(
x − x′)ρ(

x′)dx′, (2)

where x′
i = (i − 1)(L/M), i = 1, . . . , M . For the integral between x′

i
and x′

i+1, the closed Newton–Cotes formula of degree k at k + 1
equally spaced points can be written as

x′
i+1∫

x′
i

G
(
x − x′)ρ(

x′)dx′ ≈
k∑

j=0

w j G
(
x − x′

j

)
ρ
(
x′

j

)
, (3)

where x′
j = x′

i + j dx, dx = L/(kM), and weights w j are associated
with integral of the jth Lagrange basis polynomial. For k = 1, this
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is known as the trapezoidal quadrature rule; for k = 2, this is the
Simpson rule; for k = 3, Simpson’s 3/8 rule; for k = 4, Boole’s rule,
etc. [8,9]. Substituting the above subinterval integral approximation
into the summation equation (2), we obtain the extended Newton–
Cotes quadrature rule approximation to the convolution integral as:

I(x) ≈
kM∑
l=0

G
(
x − x′

l

)
ρ
(
x′

l

)
Wl, (4)

where x′
l = l dx; Wl = w j , j = mod(l,k), j �= 0; Wl = w0 + wk ,

mod(l,k) = 0, l �= 0, l �= kM; Wl = w0, mod(l,k) = 0, l = 0;
Wl = wk , mod(l,k) = 0, l = kM; and function mod(l,k) = l − k ∗
int(l/k). Defining a new density function ρ̄(x′

l) = ρ(x′
l)Wl , the

above discrete convolution summation at each point xl can be
written as

Ī(xl) =
kM∑
l=0

G
(
xl − x′

l

)
ρ̄

(
x′

l

)
. (5)

This discrete convolution can be calculated efficiently using the FFT
based method. In the following, we will give a 4th-order accuracy
algorithm based on the extended Simpson quadrature rule.

Using the extended three-point Simpson rule on an uniform
grid, the above convolution integral can be approximated as

I(x) = Ī(x) + O
(
h4), (6)

where h is the grid size, and Ī(x) is the numerical approximation
of the convolution integral that is given by

Ī(x) = 1

3
h

(
f1 + 4

M∑
j=1

f2 j + 2
M∑

j=2

f2 j−1 + f N

)
, (7)

where the total number of grid points N = 2n − 1, M = 2n−1 − 1,
and the kernel function f is given by

f
(
x, x′) = G

(
x − x′)ρ(

x′) (8)

and f j(x) = f (x, x′
j) with x′

j = ( j − 1)h. Defining a new density
function ρ̄ such that

ρ̄(x j) =

⎧⎪⎨
⎪⎩

ρ(x j), j = 1,

4ρ(x j), j = 2l,
2ρ(x j), j = 2l − 1,

ρ(x j), j = N

(9)

the above convolution summation on grid point i can be rewritten
as

Ī(xi) = 1

3
h

N+1∑
j=1

G(xi − x j)ρ̄(x j). (10)

Here, we have added one zero value term (ρ̄(xN+1) = 0) to the
original summation so that N + 1 is a power of 2. The direct cal-
culation of the above summation requires O (N) operations for a
single point xi , where i = 1, . . . , N . To obtain the convolution for all
N points on the grid, the total computational cost will be O (N2).
Fortunately, for the Green function given above, this summation
can be calculated using an FFT based method on a doubled compu-
tational domain [5–7]. This reduces the computational cost of the
original convolution for all grid points from O (N2) to O (N log(N)).

To use the FFT based method, the convolution summation has
to be replaced by a cyclic summation in the double-gridded com-
putational domain:

Īc(xi) = 1

3
h

2N+2∑
j=1

Gc(xi − x j)ρ̄c(x j), (11)

Fig. 1. The temperature distribution after the Gauss transform.

where i = 1, . . . ,2N + 2, j = 1, . . . ,2N + 2 and

ρ̄c(x j) =
{

ρ̄(x j), 1 � j � N + 1,

0, N + 1 < j � 2N + 2,
(12)

Gc(xk) =
{

G(xk), 1 � k � N + 2,

G(−x2N+4−k), N + 2 < k � 2N + 2,
(13)

ρ̄c(x j) = ρ̄c
(
x j + 2(L + 2h)

)
, (14)

Gc(xk) = Gc
(
xk + 2(L + 2h)

)
, (15)

where L = (N − 1)h. From above definition, one can show that the
cyclic summation gives the same value as the convolution summa-
tion within the original domain, i.e.

Ī(xi) = Īc(xi) for i = 1, N + 1. (16)

In the cyclic summation, the kernel is a discrete periodic function
in the doubled computational domain. This cyclic summation can
calculated using the FFT method, i.e.

Īc(xi) = Inv FFT
(

Īc(ω)
)
. (17)

Here, Inv FFT denotes the inverse FFT of the function Īc(ω) that is
given by

Īc(ω) = Gc(ω)ρ̄c(ω), (18)

where Gc(ω) and ρ̄c(ω) denote the forward FFT of the function Gc

and the ρ̄c respectively. The computational operation to calculate
cyclic summation using above FFT method is of O (N log(N)).

As an illustration of above algorithm, we calculate a one-
dimensional Gauss transform of an initial temperature function
ρ(x′) = x′ + sin2(2πx′), i.e.

I(x) =
1∫

0

exp

(
− (x − x′)2

2

)
ρ
(
x′)dx′. (19)

Such a transform can be used after some extension to solve the
heat transfer equation with a given initial temperature distribu-
tion [10]. Fig. 1 shows the new function after the Gauss transform
in the example.

To verify the accuracy of above algorithm, Fig. 2 shows the rela-
tive errors of the calculated convolution at x = 0.5 for a number of
grid points. As a comparison, we also give the relative errors using
the trapezoidal rule. It is expected that the Simpson rule FFT based
method converges much faster than the standard trapezoidal rule
based method.
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Fig. 2. The relative errors at x = 0.5 as a function grid points.

3. Two-dimensional convolution using the Simpson rule

Using the Simpson rule and the FFT method, the above algo-
rithm can be readily generalized to two-dimensional or higher-
dimensional convolution with a smooth kernel. For a two-dimen-
sional convolution

I(x, y) =
a∫

0

b∫
0

G
(
x − x′, y − y′)ρ(

x′, y′)dx′ dy′, (20)

the Simpson rule for this integral follows the tensor product of the
one-dimensional algorithm yielding

I(x, y) = Ī(x, y) + O
(
hr

xhs
y

)
, (21)

where r + s = 4, r and s are non-negative integer, and

Ī(x, y) = hxhy

9

Nx−1∑
i′=1

N y−1∑
j′=1

ci′, j′ G
(
x − x′

i, y − y′
j

)
ρ
(
x′

i, y′
j

)
, (22)

where Nx = 2n , N y = 2k and the coefficients ci′, j′ for i′ �= 1 and
i′ �= Nx − 1, j′ �= 1 and j′ �= N y − 1 are given by

ci′, j′ =
{

16, i′ = 2l and j′ = 2m,

4, i′ = 2l − 1 and j′ = 2m − 1,

8, i′ = 2l and j′ = 2m − 1; or i′ = 2l − 1 and j′ = 2m
(23)

and c1, j′ , cNx−1, j′ , ci′,1, ci′,N y−1 = 4 for even number of i′ or j′ ,
c1, j′ , cNx−1, j′ , ci′,1, ci′,N y−1 = 2 for odd number of i′ or j′ , and
c1,1, c1,N y−1, cNx−1,1, cNx−1,N y−1 = 1. As we did for one-dimen-
sional case, we add one more grid at the boundary of the computa-
tional domain so that the density ρi′,N y = 0 and ρNx, j′ = 0 for all i′
and j′ . Defining a new density function ρ̄(xi′ , y j′ ) = ci′, j′ρ(xi′ , y j′ ),
the numerical approximation of the convolution integral on each
grid point (i, j) can be rewritten as

Ī(xi, y j) = hxhy

9

Nx∑
i′

N y∑
j′

G(xi − xi′ , y j − y j′)ρ̄(xi′ , y j′). (24)

This convolution summation can be replaced by a two-dimensional
cyclic summation in the same way as the one-dimensional case.

Īc(xi, y j) = hxhy

9

2Nx∑
i′=1

2N y∑
j′=1

Gc(xi − xi′ , y j − y j′)ρ̄c(xi′ , y j′), (25)

where i = 1, . . . ,2Nx , j = 1, . . . ,2N y , and

Fig. 3. Electric field as a function of x on-axis.

ρ̄c(xi, y j) =
{

ρ̄(xi, y j), 1 � i � Nx, 1 � j � N y,

0, otherwise,
(26)

Gc(xi, y j) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G(xi, y j), 1 � i � Nx; 1 � j � N y,

G(−x2Nx−i+2, y j), Nx < i � 2Nx; 1 � j � N y,

G(xi,−y2N y− j+2), 1 � i � Nx; N y < j � 2N y,

G(−x2Nx−i+2,−y2N y− j+2),

Nx < i � 2Nx;
N y < j � 2N y .

(27)

Within the original computational domain, the cyclic summation
gives the same results as the convolution summation, i.e.

Ī(xi, y j) = Īc(xi, y j) for i = 1, Nx; j = 1, N y . (28)

This cyclic summation can be calculated using the two-dimensional
FFT in the same way as in the one-dimensional case. The compu-
tational cost of the above cyclic summation using the FFT scales as
O (NxN y(log(Nx) + log(N y))) while the computational cost of the
direct convolution summation scaling as O (N2

x N2
y).

As an application of the above algorithm, we calculated the
electric field in a domain generated by a remote charged particle
beam using a convolution of the Green function and the density
function. This electric field is used in accelerator physics to study
long-range colliding beam effects [11] and image charge effects of
conducting photo cathode [12].

Ex(x, y)

=
1∫

0

1∫
0

(x0 + x − x′)
(x0 + x − x′)2 + (y0 + y − y′)2

ρ
(
x′, y′)dx′ dy′, (29)

where

ρ
(
x′, y′) = exp

(
−1

2

(
(x′ − xc)

2

σ 2
x

+ (y′ − yc)
2

σ 2
y

))
, (30)

where xc = yc = 0.5, σx = σy = 0.16667, x0 = 2, and y0 = 0.
Fig. 3 shows the on-axis electric field Ex(x,0.5) from the above

convolution as a function of x. The electric field decreases quickly
as a function of separation distance.

To verify the convergence of the two-dimensional algorithm,
we also calculated the relative errors at (0.5,0.5) as a function of
mesh grid points together with the conventional trapezoidal rule
based FFT method. The results are given in Fig. 4. It is seen that
the Simpson rule FFT based method converges much faster than
the trapezoidal rule method as expected.
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Fig. 4. The relative errors of electric field convolution at center as a function of grid
points.

4. Discussions

In above sections, we showed that using the Simpson rule
quadrature approximation for integral and the FFT method can lead
to an efficient way to numerical calculation of a type of convolu-
tion with O (h4) accuracy and O (N log(N)) computational cost in
one- and two-dimensional convolutions. Using the tensor product
of the Simpson rule, the above algorithm can be readily extended
to three-dimensional convolution. Even though the algorithm given
here is for calculation of convolution, it can be also used to cal-
culate the cross-correlation of two functions after some variable
transformation.

The above Newton–Cotes algorithm to calculate the convolution
is illustrated using the Simpson quadrature approximation to an
integral and has an accuracy of O (h4). This accuracy can be further

improved by using an even higher-order Newton–Cotes quadrature
rule such as Boole’s rule for the approximation of the convolution
integral. The downside of these even higher-order quadrature rules
is that the new defined effective density function becomes increas-
ingly complicated in two or three dimensions so that it may not
be easily implemented into a computer program for practical ap-
plications.
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